Biomaterials:重庆医科大学江唯希/任建丽通过超声控释的气酶联合纳米平台,治疗动脉粥样硬化

2024-12-06 iNature iNature 发表于陕西省

该研究将内源性H2S气体疗法与多酶样纳米酶(LyP−1lip@HS)协同组合,治疗动脉粥样硬化。

动脉粥样硬化斑块的特征是内皮氧化应激、脂质代谢紊乱和持续炎症,可诱发严重的心血管疾病。然而,目前用于动脉粥样硬化(AS)治疗的药物,如降脂和抗血栓药物,只能调节AS的单一病理特征,难以多方面调控AS进展。

2024年11月26日,重庆医科大学江唯希及任建丽共同通讯在Biomaterials 上在线发表题为 LIFU-unlocked endogenous H2S generation for enhancing atherosclerosis-specific gas-enzymatic therapy” 的研究论文,该研究将内源性H2S气体疗法与多酶样纳米酶(LyP−1lip@HS)协同组合,治疗动脉粥样硬化。

LyP-1肽对斑块内的巨噬细胞和泡沫细胞具有高亲和力,使得LyP−1Lip@HS能够主动靶向动脉粥样硬化病变部位。低强度聚焦超声(LIFU)诱导空化后,破坏脂质膜LyP−1Lip@HS,“解锁”空心介孔普鲁士蓝(HMPB)的类酶活性并促进S-烯丙基-L-半胱氨酸(SAC)释放H2S。值得注意的是,酶催化内源性产生的H2S起多重作用,上调泡沫细胞中的ATP结合盒转运蛋白A1,增加脂质外排,促进M1巨噬细胞转化为M2巨噬细胞,缓解了斑块炎症微环境中高水平的活性氧。LyP−1Lip@HS提供了一种特异性的可控疗法,预防氧化应激、炎症和脂质代谢紊乱,在AS治疗方面应用前景广阔。

图片

晚期动脉粥样硬化(AS)可导致冠心病、心肌梗死等致命疾病,是全球主要死亡原因之一。斑块内活性氧(ROS)水平过高会导致氧化损伤,增加炎性细胞因子的产生,并使炎症环境恶化。此外,低密度脂蛋白(LDL)可被ROS氧化,形成氧化型LDL(oxLDL)。oxLDL在细胞内的大量积聚诱导泡沫细胞的形成,泡沫细胞吸引更多的炎症细胞,进而产生各种炎症介质,加剧 AS的发生和进展。不幸的是,当前用于治疗动脉粥样硬化性血管疾病的药物,主要是降脂和抗血栓形成药物,只能调节AS的单一病理特征,而忽略了氧化应激、炎症和脂质代谢之间的相互作用。此外,由于其可控性差和缺乏成像功能,基于药物的疗法不能保证精确性及生物安全性。因此,当务之急是开发一个安全、特异性和多模式的综合性AS治疗平台。

硫化氢(H2S)是继一氧化氮(NO)和一氧化碳(CO)之后的第三种气体信使。最近研究表明,H2S可以调节心血管疾病。有学者发现H2S可以通过促进ATP结合盒转运蛋白A1(ABCA1)的产生来增加胆固醇外排,ABCA1促进胆固醇与高密度脂蛋白(HDL)的反向转运,从而消除泡沫细胞中多余的胆固醇。此外,H2S能够调节iNOS-MAPK相关信号通路,阻止了炎症因子的产生,促使巨噬细胞转化为抗炎表型(M2表型)。据报道,H2S也是一种血管松弛剂。上述研究表明,H2S在AS的多发病机制中具有广泛的调节作用。因此,作者认为H2S疗法有望延缓或可能逆转动脉粥样硬化斑块的发展。然而,气体在输送过程中容易发生泄漏,且其运输缺乏特异性,影响气体治疗的有效性。值得注意的是,S-烯丙基-L-半胱氨酸(SAC)可以作为底物,并通过胱硫醚-β-合酶(CBS)和胱硫醚-γ-裂解酶(CSE)催化生成内源性H2S。表明通过酶催化产生内源性H2S,而不是直接输送气体本身或外源性供体,能够有效避免气体泄漏。

图片

图1 集成内源性H2S释放的多功能纳米平台实现动脉粥样硬化类多酶纳米酶治疗(图源自Biomaterials 

纳米技术的快速发展,特别是用于综合诊断和治疗的创新型多功能纳米材料的出现,为实现AS协同治疗奠定了基础。普鲁士蓝(PB)是一种人工纳米酶,具有类天然过氧化物酶(POD)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性,能够去除斑块微环境中的高浓度ROS并增强AS的治疗效果。以前的研究报道,PB有助于恢复巨噬细胞介导的炎症消退。此外,这种多功能纳米酶具有Fe3+的特性,如高效的近红外吸收和顺磁特性,具备作为光声/磁共振(PA/MR)成像的双模态造影剂的潜力,适合AS的成像监测。PB可以通过蚀刻改性为采用空心介孔结构(HMPB),具有理想的药物负载能力。

该研究通过将纳米酶与内源性H2S气体疗法相结合,构建了一种多功能纳米平台LyP−1lip@HS,用于治疗AS。LyP-1多肽与磷脂聚合物结合,然后形成一层磷脂分子来包裹载有SAC的HMPB(HS)。LyP-1是一种有9个氨基酸的长肽(CGNKRTRGC),对受体蛋白p32具有特异性亲和力,并在斑块内的内皮细胞、巨噬细胞和泡沫细胞中大量表达。除了增强纳米颗粒(NP)的主动靶向能力之外,肽功能化磷脂分子还用于覆盖HMPB的酶活性,并防止SAC在到达病变之前不期望的释放。在LyP-1介导LyP−1lip@HS靶向斑块的递送后,低强度聚焦超声(LIFU)诱导的空化作用促进了脂质膜的分解,从而在动脉粥样硬化斑块内可控地释放HMPB和SAC。随后CBS和CSE催化SAC生成H2S,增加了oxLDL从泡沫细胞的排出,促进了巨噬细胞从促炎表型(M1表型)向抗炎表型(M2表型)的分化,并抑制了炎症。此外,HMPB可以有效清除过量的ROS,并与H2S协同作用缓解炎症性疾病。总的来说,该研究提出了一种非侵入性和时空可控的治疗模式,同时解决AS的多个致病因素,并通过PA和MR成像进行监测,具有很高的临床转化潜力。

参考消息:

https://www.sciencedirect.com/science/article/pii/S0142961224005076?via%3Dihub

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (1)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=2241351, encodeId=a7fe22413514c, content=<a href='/topic/show?id=98773329350' target=_blank style='color:#2F92EE;'>#动脉粥样硬化#</a> <a href='/topic/show?id=b9de122091fa' target=_blank style='color:#2F92EE;'>#H2S气体疗法#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=12, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=122091, encryptionId=b9de122091fa, topicName=H2S气体疗法), TopicDto(id=33293, encryptionId=98773329350, topicName=动脉粥样硬化)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=cade5395722, createdName=梅斯管理员, createdTime=Sun Dec 08 19:27:46 CST 2024, time=2024-12-08, status=1, ipAttribution=陕西省)]

相关资讯

J Clin Invest 衣康酸通过激活抗炎反应抑制动脉粥样硬化

研究揭示了小鼠体内衣康酸通过诱导Nrf2依赖性巨噬细胞抗炎反应抑制动脉粥样硬化的发生,该途径的激活可能是治疗动脉粥样硬化的一个重要途径。

JAMA 子刊:儿童时期的体重增长、脂肪组织积累与青少年动脉粥样硬化风险的关系

出生后体重增长、较高的收缩压、VAT及VAT的增加与青少年时期更厚的颈动脉内膜中层厚度相关。

Redox Biol 山东大学齐鲁医院陈玉国/徐峰/薛丽教授团队揭示ALDH2调控动脉粥样硬化进展的新机制

山东大学齐鲁医院团队发表研究,揭示 ALDH2 活性缺陷致巨噬细胞极化促动脉粥样硬化机制,为防治提供新思路及靶点。

JACC-BTS 华科大同济医院汪道文/丁虎团队揭示超级增强子来源ABCA1-seRNA表观调控胆固醇稳态抗动脉粥样硬化新机制

该研究通过系统筛选及验证发现:超级增强子来源RNA ABCA1-seRNA表观调控胆固醇稳态,发挥抗炎和抗动脉粥样硬化的作用,有望成为ASCVD降脂治疗新靶点。

JACC-BTS 江苏省人民医院贾恩志教授团队揭示非经典开放阅读框编码蛋白质circBTBTD-420aa在冠心病中的功能及机制

心血管病患病率、死亡率高,冠心病尤甚。贾恩志团队研究发现 NHORFs 编码的 circBTBD7-420aa 能调控动脉粥样硬化,阐述机制并构建工程化外泌体,为冠心病防治提供新途径。

重庆医科大学任建丽/江唯希《Biomaterials》:超声控释的气酶联合纳米平台治疗动脉粥样硬化

该团队开发了一种超声可控释放的气酶联合多功能纳米平台,用于治疗动脉粥样硬化。

Adv Funct Mater 厦心医院桑芒芒/郑锦荣团队开发基于纳米医学的动脉粥样硬化新型治疗策略

动脉粥样硬化是心血管病高死亡率主因之一,临床缺有效药物。厦大附属心血管病医院团队开发 UM - EVLipo 仿生纳米机器人,阐述其制备、功能和治疗机制,为相关疾病治疗提供新方向。

综述|口腔微生物群介导炎症反应与动脉粥样硬化研究进展

靶向口腔微生物的检测和干预,将为诊断和治疗AS性心脑血管疾病提供新思路。

降脂近50%!JACC:siRNA长效疗法,打四针,疗效维持近1年

olpasiran可持久降低Lp(a)水平。接受每12周一次≥75 mg剂量的参与者在末次给药后近一年内,Lp(a)水平仍显著降低约40%-50%。

ATVB 中国医学科学院医药生物技术研究所许艳妮/司书毅团队揭示ASGR1缺失通过调节脂蛋白代谢和胆固醇外排抑制动脉粥样硬化进展

本研究阐明了在经典的AS模型小鼠ApoE-/-中敲除和过表达ASGR1在AS发展中的作用及机制,为AS的治疗提供了新的思路与靶点。