安徽医科大学刘琦/南开大学刘阳《AM》:溶酶体靶向聚集性纳米颗粒逆转免疫抑制肿瘤微环境用于癌症免疫治疗

2024-10-05 BioMed科技 BioMed科技 发表于上海

研究构建新型溶酶体靶向聚集性纳米颗粒诱导 LMP 和 ICD 抗肿瘤免疫反应,联合 PD-L1 单抗增强癌症免疫治疗效果。

近年来,纳米医学的研究主要集中在开发纳米颗粒作为药物载体,以最大限度地提高载药的生物利用度,而很少关注纳米颗粒直接对抗癌症或调节相关生理过程的潜力。近期研究表明,一些具有特定成分、化学结构或表面形态的纳米颗粒(例如,氧化石墨烯纳米片、锰纳米颗粒等)可以发挥某些生物学功能。因此,合理设计的纳米颗粒提供了直接对抗癌症的机会,而不是装载治疗药物。溶酶体在维持细胞稳态中起着至关重要的作用,一旦溶酶体膜通透性(Lysosomal membrane permeabilization, LMP)发生改变,溶酶体倾向于将各种水解酶(如组织蛋白酶)释放到细胞质中,导致溶酶体依赖性细胞死亡。此外,细胞癌变改变了溶酶体膜的结构和功能,使其比正常细胞溶酶体更脆弱,对LMP更敏感。迄今为止,几种类型的小分子(如溶酶体清洁剂、膜溶解肽和光敏剂)已被报道用于诱导LMP,并且还开发了基于纳米颗粒的LMP诱导剂,具有高LMP诱导效果和低毒副作用。但在大多数基于纳米颗粒的策略中,LMP是由纳米载体递送的化学试剂诱导的,纳米材料不具有LMP诱导活性。此外,现有的LMP诱导剂没有被报道用于诱导免疫原性细胞死亡(Immunogenic cell death, ICD)。

近日,安徽医科大学药学院刘琦副教授团队与南开大学化学院刘阳教授团队针对目前没有可用的能够高效诱导ICD的LMP诱导剂,构建了一种新型具有生物活性的溶酶体靶向聚集性纳米颗粒(Lysosomal-targeting aggregated nanoparticle, LTANP)来诱导LMP并激活ICD相关的抗肿瘤免疫反应。LTANP具有核-壳结构,其核为表面具有定制比例的甘露糖-6-磷酸配体(M6PL)和1-乙烯基咪唑(VI)的蛋白质纳米胶囊(PNC),而壳是由pH响应型聚乙二醇(PEG)形成,该结构使得LTANP在血液循环和正常器官中保持稳定,最终在肿瘤组织中富集。PNC被肿瘤细胞摄取转运至溶酶体后形成大尺寸的聚集体难以通过胞吐作用被清除,最终诱导LMP。此外,LTANP诱导的LMP可以干扰自噬-溶酶体途径有效触发ICD,随后通过释放钙网蛋白(CRT)、高迁移率族蛋白B1(HMGB1)和三磷酸腺苷(ATP),促进树突状细胞(DCs)的成熟,增加CD8+ T细胞的肿瘤浸润,降低髓源性抑制细胞(MDSCs)和调节性T细胞(Tregs)的聚集,并将M2样巨噬细胞极化为M1样巨噬细胞,从而逆转免疫抑制性肿瘤微环境。但是,LTANP诱导LMP过程中显著提高了癌细胞表面PD-L1的表达。为了解决这一问题,该团队将LTANP与PD-L1单克隆抗体(αPD-L1)联合使用,进一步增强了癌症免疫治疗效果(图1)。随着LTANP对B16F10荷瘤小鼠的全身给药,研究发现LTANP在血液循环中维持稳定并有效在肿瘤部位蓄积,可有效激活全身抗肿瘤免疫应答,重塑免疫抑制肿瘤微环境,从而将肿瘤免疫原性从“冷”转化为“热”状态。此外,LTANP进一步激活了特异性抗肿瘤免疫记忆效应,显著抑制了恶性肿瘤的复发和转移。

图片

图1. 溶酶体靶向聚集性纳米颗粒诱导肿瘤细胞LMP和ICD用于癌症免疫治疗

该研究工作近日以“Lysosome Targeted Nanoparticle Aggregation Reverses Immunosuppressive Tumor Microenvironment for Cancer Immunotherapy”为题在线发表在《Advanced Materials》上(DOI: 10.1002/adma.202412730)。安徽医科大学刘琦/潘佩副教授、南开大学刘阳教授为本文通讯作者,安徽医科大学研究生杨剑辉为本文共同第一作者,安徽医科大学为第一通讯单位,该研究得到了国家自然科学基金,安徽省高校自然科学重点项目,安徽省自然科学基金,国家重点研发计划等项目的支持。

原文链接:

https://doi.org/10.1002/adma.202412730.

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (1)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=2229427, encodeId=75f9222942eb5, content=<a href='/topic/show?id=d8d5e7476de' target=_blank style='color:#2F92EE;'>#纳米颗粒#</a> <a href='/topic/show?id=0a7ee13177e' target=_blank style='color:#2F92EE;'>#癌症免疫治疗#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=129, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=71317, encryptionId=0a7ee13177e, topicName=癌症免疫治疗), TopicDto(id=77476, encryptionId=d8d5e7476de, topicName=纳米颗粒)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=cade5395722, createdName=梅斯管理员, createdTime=Sat Oct 05 16:47:10 CST 2024, time=2024-10-05, status=1, ipAttribution=上海)]

相关资讯

Nature子刊:细菌疗法和纳米颗粒在治疗领域的应用

细菌作为治疗手段的历史、微生物群疗法的最新发展,以及使用合成生物学和纳米技术来克服这一领域所面临挑战的方法。该综述论文以“Bacterial therapies at the interface of

四川大学高祥团队《ACS Nano》:肿瘤微环境活化纳米颗粒介导免疫基因治疗及M2巨噬细胞靶向抑制剂协同肿瘤免疫治疗

该研究设计了一种肿瘤微环境智能响应纳米颗粒介导免疫基因治疗及M2巨噬细胞靶向抑制剂协同肿瘤免疫治疗。

安医大王咸文/詹鹤琴教授Journal of Nanobiotechnology:纳米技术在肾小球肾炎治疗中的应用

文章总结了目前纳米颗粒在肾小球肾炎中的应用,以期为今后更好地治疗肾小球肾炎提供参考。

中国学者一作兼通讯!Nature系列综述:工程化纳米颗粒,精准药物递送!

该综述重点介绍了在不同CNS疾病中应靶向的关键区域和细胞类型,并讨论了生理屏障和疾病引起的血脑屏障及整体大脑变化如何影响通过全身途径实现治疗精准递送。

Nature Nanotechnology:南开大学黄兴禄等团队合作利用机器学习辅助肿瘤血管中纳米颗粒通透性的单血管分析

内皮细胞间的转运是提高抗癌药物传递效率的重要过程。肿瘤血管的内皮细胞在内皮细胞(如内皮间隙)和跨细胞开窗(如囊泡-液泡细胞器(VVOs))之间存在间隙。

Nature Nanotechnology:麻省理工开发多药物纳米颗粒平台,改善抗癌药物递送

几年来,Jeremiah Johnson 教授及其团队致力于研究用于携带多种药物的纳米聚合物。在这项最新研究中,研究团队终于得到了他们梦寐以求的东西——一种瓶刷状的纳米颗粒。

Nature子刊:浙江大学陈鸣宇/蔡秀军/顾臻等开发新的纳米颗粒,用于胆囊癌的深层肿瘤光动力治疗

该研究报道了具有持续发光的刺激敏感肿瘤靶向光动力纳米颗粒(STPNs)用于治疗深部肿瘤。

NSR:唐本忠等团队合作开发新的纳米颗粒,用于肾移植全过程监测和评估

该研究报道了一种基于明亮、光稳定、长循环AIE活性NIR-II纳米造影剂DIPT-ICF NPs的荧光技术,用于肾移植的全过程监测和评价。

两高校研究团队制备新型纳米颗粒诱导肾脏代谢重编程

该研究揭示了有机单线态双自由基纳米颗粒诱导的独特代谢重编程活性,验证了其体内外的生物安全性,并为它们潜在的生物医学应用提供了新的见解。

高金明最新ACS Nano:逐步超pH敏感胶束克服pKa屏障,实现全身淋巴结输送

作者研究了UPS5.3的靶向机制,观察了淋巴结淋巴管中的积聚和对淋巴结内巨噬细胞的依赖性。