Radiology:利用人工智能筛查乳腺癌的早期指标

2024-09-08 shaosai MedSci原创 发表于上海

近年来,回顾性研究表明,在筛查中使用人工智能(AI)系统可能有助于减轻放射科医生的工作量问题,同时保持筛查绩效。

数据显示,使用乳腺钼靶检查进行乳腺癌筛查成功地降低了乳腺癌死亡率,但给乳腺放射科医生带来了大量的工作量。乳腺放射科医生的任务是阅读大量的乳腺钼靶图像,其中大多数没有出现可疑病变或需要召回。当筛选程序采用双重阅读来提高癌症检测和减少假阳性时,阅读工作量进一步增加。此外,召回的患者进行进一步的诊断测试增加了放射科医生的临床工作量。这种增加的工作量加剧了专业乳腺放射科医生的短缺

近年来,回顾性研究表明,在筛查中使用人工智能(AI)系统可能有助于减轻放射科医生的工作量问题,同时保持筛查绩效。一项研究提出,对于人工智能系统认为可能正常的筛查,使用单次读取而不是两次读取,可以减少放射科医生的工作量,同时保持筛查的敏感性提高特异性,并减少假阳性。鉴于最近的证据和放射科医生日益增加的工作量负荷,人工智能系统可能是基于乳腺癌概率分层筛查的有用辅助工具,这促使人们探索其在基于人群的乳腺癌筛查中的应用。

此外,让放射科医生在人工智能辅助决策支持和人工智能提供的病变标记下阅读乳腺钼靶可能会提高筛查的敏感性。将人工智能用于筛查分层和决策支持不仅可以保持而且可以提高筛查性能。


近日,发表在Radiology杂志上的一篇研究比较了人工智能系统实施前后接受筛查的两组女性的乳腺放射科医生工作量和筛查表现。

回顾性研究纳入了50-69岁丹麦首都地区接受两年一次乳腺钼靶检查的女性患者。在人工智能系统实施之前(2020年10月1日至2021年11月17日),所有筛选都涉及双读。对于AI系统实施后(2021年11月18日至2022年10月17日)进行的筛查,可能正常的筛查(2022年5月3日之前AI检查分数≤5分,2022年5月3日或之后AI检查分数≤7分)由19名高级专业乳腺放射科医生中的一名单独阅读。剩下的筛查结果由两名具有人工智能辅助决策支持的放射科医生阅读。在2020年10月1日至2023年4月15日期间检索活检和手术结果,确保至少180天的随访。筛选指标采用χ2检验进行比较。通过节省筛选读数来衡量阅读工作量的减少。

在人工智能系统实施前后,研究分别筛查了60751名和58246名女性(两组的中位年龄为58岁[IQR, 54-64岁]),人工智能前和人工智能后的中位筛查间隔为845天(IQR, 820-878天)和993天(IQR, 968-1013天);P < 0.001)。人工智能系统实施后,召回率下降了20.5%(人工智能之前的召回率为3.09%[1875 / 60751],而人工智能之前的召回率为2.46% [1430 / 58246];P < 0.001),肿瘤检出率升高(0.70% [423 / 60751]vs 0.82% [480 / 58246];P = 0.01),假阳性率下降(2.39% [1452 / 60751]vs 1.63% [950 / 58246];P < 0.001),阳性预测值增加(22.6% [423 / 1875]vs 33.6% [480 / 1430];P < 0.001),小肿瘤(≤1 cm)发生率增高(36.6%[347例中的127例]vs 44.9%[365例中的164例];P = 0.02),淋巴结阴性癌的发生率不变(330例中253例76.7% vs 351例273例77.8%);P = 0.73),浸润性癌症发生率下降(84.9% [359 / 423]vs 79.6% [382 / 480];P = 0.04)。阅读工作量减少了33.5%(116492次阅读中有38977次)。


 
成像报告和数据系统(BI-RADS)密度分类的癌症检出率,由第二位高级放射科医生分配

在基于人群的乳腺钼靶筛查项目中,使用人工智能减少了乳腺放射科医生的总体工作量,同时提高了筛查效果。

原文出处:

Andreas D Lauritzen,Martin Lillholm,Elsebeth Lynge,et al.Early Indicators of the Impact of Using AI in Mammography Screening for Breast Cancer.DOI:10.1148/radiol.232479

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (1)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=2224713, encodeId=96782224e1301, content=<a href='/topic/show?id=73c423e2572' target=_blank style='color:#2F92EE;'>#乳腺癌#</a> <a href='/topic/show?id=d3a024808e0' target=_blank style='color:#2F92EE;'>#人工智能#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=34, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=23725, encryptionId=73c423e2572, topicName=乳腺癌), TopicDto(id=24808, encryptionId=d3a024808e0, topicName=人工智能)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=cade5395722, createdName=梅斯管理员, createdTime=Sun Sep 08 20:54:23 CST 2024, time=2024-09-08, status=1, ipAttribution=上海)]

相关资讯

24小时的最佳用药时间,根据肿瘤细胞内的“内部时钟”来优化治疗!

研究表明昼夜节律影响药物治疗效果,柏林夏里特医学院研究确定部分乳腺癌治疗最佳时间,涉及基因及个性化治疗,有望提高疗效并减少不良反应。

Adv Sci:田春艳/王建/高海东合作发现ZNF8与Smad3协调,通过在乳腺癌中募集SMYD3促进肺转移

该研究首次建立了乳腺癌细胞中Smad3的相互作用组,并确定了ZNF8是一种新的Smad3辅因子。

Nat Rev Clin Oncol综述:HER2靶向疗法在乳腺癌以外实体瘤中的应用前景、耐药机制及联合治疗策略

该综述整合了近5年HER2在乳腺癌以外实体瘤中应用的全新进展,概述了HER2靶向治疗耐药性机制,提供了未来有望克服耐药的HER2靶向治疗策略,对HER2靶向治疗领域的发展具有促进意义。

任光辉教授 | 乳腺癌外科治疗的热点问题探讨

在本次采访中,我们有幸邀请到南方医科大学深圳医院的乳腺外科专家——任光辉教授,就乳腺癌外科治疗的热点问题进行了深入探讨。

Radiology:可乳腺癌风险预测的新兴深度学习模型!

现阶段,常规使用的乳腺癌临床风险预测模型没有考虑乳腺钼靶图像数据,尽管最近的人工智能研究报告在使用乳腺钼靶图像数据时显着提高了性能。

Radiology:基于癌症干预和监测模型网络的乳腺癌筛查策略评估

预计2023年将有超过353500例新发乳腺癌病例,约4700例因乳腺癌死亡。持续参与乳腺钼靶筛查可将乳腺癌死亡率降低40%或更多。