笔记详情
标题
Network Synthesis and Path Analysis
内容
Network Synthesis and Path Analysis

Logical organization of large-scale data sets is an important challenge in systems biology; our model provides such organization for one guard cell signaling system. As summarized in Table S1, we have organized and formalized the large amount of information that has been gathered on ABA induction of stomatal closure from individual experiments. This information has been used to reconstruct the ABA signaling network (Figure 2). Figure 2 uses different types of edges (lines) to depict activation and inhibition, and also uses different edge colors to indicate whether the information was derived from our model species, Arabidopsis, or from another plant species. Different types of nodes (metabolic enzymes, signaling proteins, transporters, and small molecules) are also color coded. An advantage of our method of network construction over other methods such as those used in Science's Signal Transduction Knowledge Environment (STKE) connection maps [61] is the inclusion of intermediate nodes when direct physical interactions between two components have not been demonstrated.

As is evident from Figure 2, network synthesis organizes complex information sets in a form such that the collective components and their relationships are readily accessible. From such analysis, new relationships are implied and new predictions can be made that would be difficult to derive from less formal analysis. For example, building the network allows one to “see” inferred edges that are not evident from the disparate literature reports. One example is the path from S1P to ABI1 through PLD. Separate literature reports indicate that PLDα null mutants show increased transpiration, that PLDα1 physically interacts with GPA1, that S1P promotion of stomatal closure is reduced in gpa1 mutants, that PLD catalyses the production of PA, and that recessive abi1 mutants are hypersensitive to ABA. Network inference allows one to represent all this information as the S1P → GPA1 → PLD → PA—| ABI1—| closure path, and make the prediction that ABA inhibition of ABI1 phosphatase activity will be impaired in sphingosine kinase mutants unable to produce S1P.

Another prediction that can be derived from our network analysis is a remarkable redundancy of ABA signaling, as there are eight paths that emanate from ABA in Figure 2 and, based on current knowledge (though see below) these paths are initially independent. The prediction of redundancy is consistent with previous, less formal analyses [62]. The integrated guard cell signal transduction network (which includes the ABA signal transduction network) has been proposed as an example of a robust scale-free network [62]. To classify a network as scale-free, one needs to determine the degree (the number of edges, representing interactions/regulatory relationships) of each node, and to calculate the distribution of node degrees (denoted degree distribution) [45,46]. Scale-free networks, characterized by a degree distribution described by a power law, retain their connectivity in the face of random node disruptions, but break down when the highest-degree nodes (the so-called hubs) are lost [46]. While the guard cell network may ultimately prove to be scale-free, the network is not sufficiently large at present to verify the existence of a power-law degree distribution; thus, the analogy with scale-free networks cannot be rigorously satisfied.

点击翻译
来源
PLoS Biol. 2006 October; 4(10): e312.
类别
领域
Plant Science