Nature:是什么决定了你的抗压能力

2014-11-19 叶予 生物通

在压力山大的时候,你是一蹶不振陷入抑郁,还是会很快走出阴霾?本期Nature杂志上的一项研究指出,在压力下复原的心理韧性(resilience)取决于大脑中的一种蛋白。西奈山伊坎医学院(Icahn School of Medicine)的这项研究挑战了人们之前对抑郁症的认识,为治疗这种疾病带来了新的希望。 “之前的抑郁症研究大多涉及5-羟色胺等神经递质,”领导这项研

在压力山大的时候,你是一蹶不振陷入抑郁,还是会很快走出阴霾?本期Nature杂志上的一项研究指出,在压力下复原的心理韧性(resilience)取决于大脑中的一种蛋白。西奈山伊坎医学院(Icahn School of Medicine)的这项研究挑战了人们之前对抑郁症的认识,为治疗这种疾病带来了新的希望。

“之前的抑郁症研究大多涉及5-羟色胺等神经递质,”领导这项研究的Eric J. Nestler教授说。“我们这项研究提供了一个新途径,有助于人们开发更有效的抗抑郁药物。”

研究人员提出的新抑郁症模型与蛋白beta-catenin(B-catenin)有关,这种蛋白在大脑中广泛表达而且具有多种生物学功能。他们构建了长期遭遇社交压力的小鼠模型,发现小鼠的恢复能力(即韧性)取决于D2神经元中B-catenin的活性。D2 神经元位于伏隔核NAc,而NAc是大脑的奖赏和激励中心。

研究人员发现,B-catenin激活能够为小鼠提供保护,帮助它们抵御压力。而B-catenin失活的小鼠表现出抑郁症的标志性行为。另外,在抑郁症患者死后的大脑组织中,B-catenin也的确受到了抑制。

“值得注意的是,不论这些人死亡时有没有在服用抗抑郁药物,B-catenin活性都比较低,”文章的第一作者Caroline Dias说。“这说明,抗抑郁药物无法触及这个系统。”

研究人员选取那些能从抑郁中恢复的小鼠,阻断了它们D2神经元中的B-catenin,结果这些小鼠变得对压力特别敏感。研究人员又在不堪压力的小鼠中激活B-catenin,使这些小鼠恢复了正常。

大脑NAc区域的几乎所有神经细胞都是中型多棘神经元。这些细胞主要分为两类,一类通过D1受体检测多巴胺,另一类通过D2受体检测多巴胺(多巴胺是奖赏和激励调控中的重要神经递质)。这项研究主要探讨了D2神经元与抑郁症之间的关系。

研究显示,D2神经元的B-catenin激活与Dicer1有关。Dicer1在microRNA生成中起到了关键性的作用,而microRNA能够控制基因的表达。

“我们鉴定了一些被靶标的基因,日后可以研究它们对抑郁的具体影响。我们推测,就是这些基因介导了B-catenin-Dicer级联对韧性的作用效果,”Dr. Dias说。

这项研究首次向人们展示,抑郁症患者和抑郁症小鼠模型的伏隔核存在B-catenin缺陷。高活性的B-catenin有助于抑郁后的恢复,而且这种蛋白与microRNA合成紧密相关。

研究指出,未来人们可以通过提高韧性来抵抗压力。“之前人们主要是想用抗抑郁药物来消除压力的不良影响,现在我们提出了一条新途径,通过刺激天然韧性进行抑郁症治疗,”Dr. Nestler说。

原始出处

Dias C1, Feng J1, Sun H1, Shao NY1, Mazei-Robison MS1, Damez-Werno D1, Scobie K1, Bagot R1, LaBonté B1, Ribeiro E1, Liu X1, Kennedy P1, Vialou V1, Ferguson D1, Peña C1, Calipari ES1, Koo JW1, Mouzon E1, Ghose S2, Tamminga C2, Neve R3, Shen L1, Nestler EJ1.β-catenin mediates stress resilience through Dicer1/microRNA regulation.Nature. 2014 Nov 12.

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (1)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1880375, encodeId=aa3718803e55c, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=29, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Thu Oct 22 23:41:00 CST 2015, time=2015-10-22, status=1, ipAttribution=)]
    2015-10-22 liye789132251

相关资讯

Biochem J:复杂蛋白复合物调节人类疾病发生过程的分子机制

近日,来自英国邓迪大学的研究人员通过研究揭示了一种复杂蛋白质在癌症发育、病毒感染以及自身免疫疾病发生过程中如何被激活,相关研究刊登于国际杂志Biochemical Journal上,该研究为开发新型抵御人类疾病的靶向疗法提供了新的研究思路和依据。 研究者Jiazhen Zhang教授表示,我们揭示了蛋白质复合物NF-κB被激活的分子机制,NF-κB是B细胞中激活的一种细胞核因子,其在几乎所有的动

Blood:阻断特殊蛋白或可双管齐下终结癌细胞

STAT转录因子参与了许多种癌症的发生,STAT3在肿瘤细胞中通常处于激活状态,因此靶向作用STAT3的药物也常常应用于癌症的治疗中,然而STAT3对机体免疫系统的发育非常重要;近日,来自奥地利公立大学的研究人员通过研究揭示,阻断免疫系统细胞中的STAT3会导致抗肿瘤免疫效力的增强,这就为开发抗STAT3的新型癌症疗法提供了新的希望,相关研究刊登于国际杂志Blood上。 这种所谓的信号传导蛋

NSMB:铁转运蛋白的结构新发现

近日研究发现,铁是人类最丰富的微量元素。作为某些蛋白质的辅因子,它在氧运输和代谢中起着非常重要的作用。由于铁的重要性主要体现在各种细胞的作用过程中,而它造成的伤害是由于铁可以在体内不受控制的不断积累造成的,事实上铁的吸收和存储是受严格控制的。在哺乳动物中,铁由膜运输蛋白DMT1导入细胞。一旦DMT1发生突变就会影响其传输特性,从而导致与铁相关的代谢疾病产生,如贫血和铁储存疾病血色素沉着症。 In

Cell:科学家发现细胞的“身份证”

细胞依赖于一些途径来确立它们的身份和功能。现在来自斯坦福大学的研究人员称,他们发现了标记人体中不同类型细胞身份的一种新型机制,其阻止了细胞转变为其他的类型。这一重要的研究发表在《细胞》(Cell)杂志上。数十年前,科学家们就已经学会了读取细胞利用来将一连串的DNA碱基转变为蛋白质氨基酸的基本遗传密码。但是十多年来,他们还在试图破译嵌入在生物体基因组中更为复杂的密码:组蛋白密码。组蛋白是指在染色体中

Cancer Res:发现实体瘤治疗关键蛋白——EphA3

近日,一个国际科学家小组研究发现,一种抗EphA3蛋白的抗体在实体瘤的微环境下能够发挥抗肿瘤的作用。在胚胎发育期间EphA3存在于正常器官中,但也在血癌和实体瘤患者体内表达。这种基于抗体的治疗途径可能成为治疗实体瘤的有效候选方案。 这项研究由来自澳大利亚的莫纳什大学、路德维希癌症研究所和美国KaloBios Pharmaceuticals公司的研究人员共同完成,相关结果发表在Ca

ACSDBC:开发出可对DNA结合蛋白进行重新修饰的新型技术

2014年7月15日 讯 /生物谷BIOON/ --近日,来自西班牙国立癌症研究中心的研究人员通过对名为BuD的DNA结合蛋白同DNA之间的结合作用进行重编程,就可以更改其结合的特殊DNA区域,这将可以帮助科学家们对包含基因组信息的指令进行修改和编辑从而治疗一系列人类疾病或者开发出新型的遗传工程化修饰的有机体,相关研究成果刊登于国际杂志Acta Crystallographica,Sectio